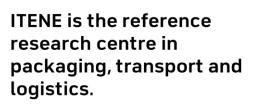
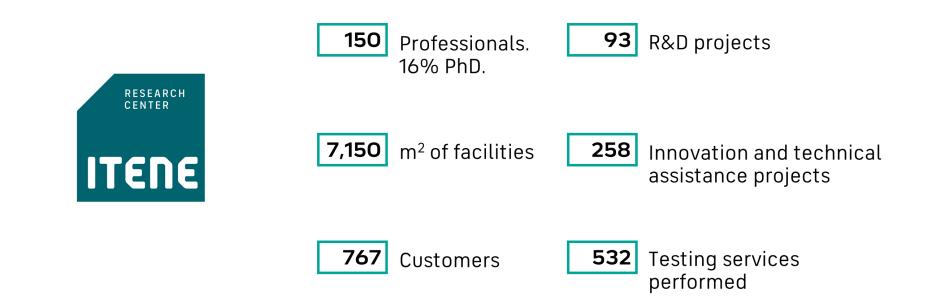
Sherpack Final Workshop

End-of-life and life cycle of the Sherpack material Antonio Dobon | ITENE

End-of-life and life cycle of the Sherpack material

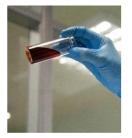
<u>Antonio Dobón</u>, Cristina González, Carla Bartolomé, Jordi Palau (ITENE), Caroline Locre (CTP) On-line workshop, October 7th, 2020

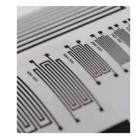



25

ITENE

25 years creating technological solutions through R&D




New advanced materials

Nano-materials

Packaging and packaging systems

Integrated intelligent systems

Circular economy & sustainability

Packaging for distribution

Logistics, transport and distribution

Urban mobility and intermodality

Security of goods and people

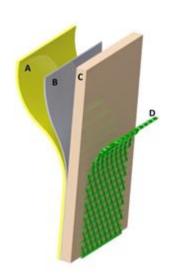
We work with all the state-of-the-art technologies.

PILOT PLANT

- Packaging
- New materials and processing
- Packaging production
- Modification and synthesis of additives
- Compostability assessment of packaging materials

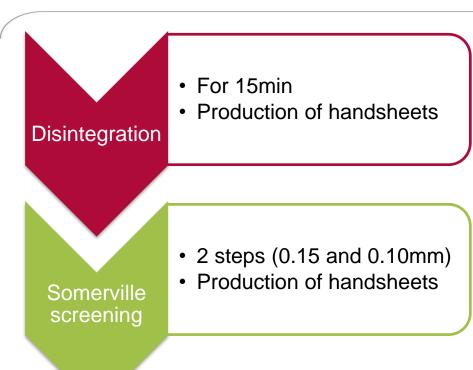
CENTRES

Transportation simulation


LABORATORIES

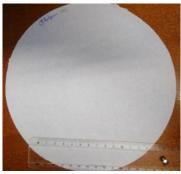
- Chemical characterisation of materials
- Physical-mechanical characterisation of materials
- Microbiological analysis
- Nano-security
- Packaging assessment
- Approval of dangerous goods packaging

Proofs-of-Concept


Layer		PoC#1	PoC#2	
ID	Layer type	wt%	wt%	
Α	Base paper	72	60	
В	MFC layer	19	21	
С	PLA-blend	8	9	
D	Starch		9	
Total		100	100	

7

End-of-life: Recyclability trials



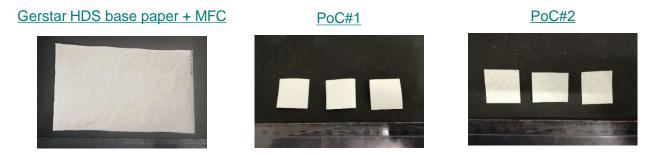
PE/Paper (ref. material) No screening

MFC/Paper No screening

Sherpack Proofs-of-Concept

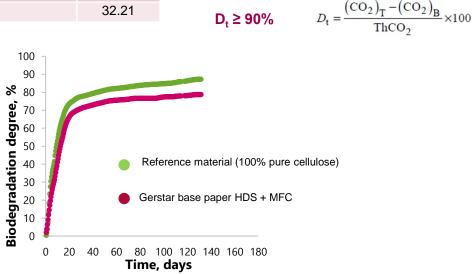
Less than 1% rejects after Somerville screening

Very good visual aspect of handsheets


Adapted method for small lab-scale simples in Sherpack

Test		Standard	Test duration	Sample weight	Sample form	Starndard
Chemical characterization of material: - Dry and volatile solids - Regulated metals (Zn, Cu, Ni, Cd, Pb, Hg, Cr, Mo, Se, As, Co) - Hazardous substances (F) - Infrared transmission spectrum		EN 13432:2000 PT-04-63	2 weeks	20 g	Scraps	Yes
Biodegradation under composting conditions		EN 13432:2000 ISO 14855-1:2012	6 weeks - 6 months	100 g	Scraps	Yes
Disintegration under composting conditions and physico-chemical properties of compost (total dry solids, volatile solids, pH,	Pilot-scale	EN 13432:2000 ISO 16929:2013	12 + 2 weeks	14 kg	Final form	Yes
N-NH4, N-NO2, N-NO3, N, P, K, Mg, salt content, density, and maturity level)	Lab-scale	ISO 20200:2015 (home compost)	90 days (+ 90 days)	300 g	Final form	Sherpack
Ecotoxicity in 2 plant species: - Garden cress (Lepidium sativum) - Summer barley (Hordeum vulgare)		EN 13432:2000 OECD 208 (2006)	3 weeks, after disintegration test	· ·	st samples from ntegration)	Yes

Sample	Bioegradation (ISO 14855-1:2012)	Disintegration (ISO 20200:2015)	Ecotoxicity (OECD 208 2006)
Gerstar base paper HDS + MFC	 	Not tested	Not tested
PoC#1: Gerstar HDS base paper + MFC + PLA blend	On-going	v	On-going
PoC#2: Gerstar HDS base paper + MFC + PLA blend + starch-grid	On-going	~	On-going

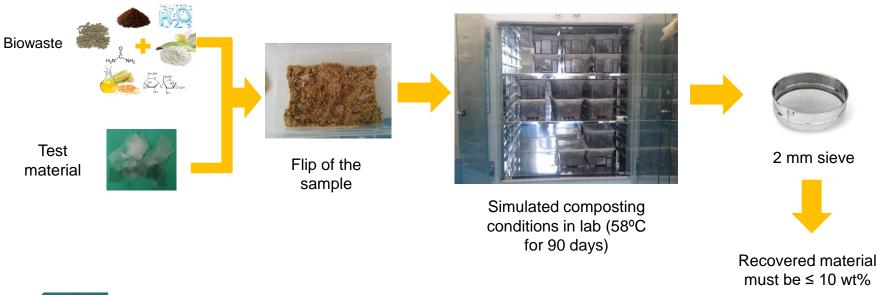


 $ThCO_2 = M_{TOT} \times C_{TOT} \times \frac{44}{12}$

Biodegradation (ISO 14855-1:2012)

Sample description	C (%)
100% pure cellulose	42.12
Gerstar base paper HDS + MFC	32.21

Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions. Method according to the analysis of generated carbon dioxide



Biodegradability vs reference material = **90.18%**

sher pack

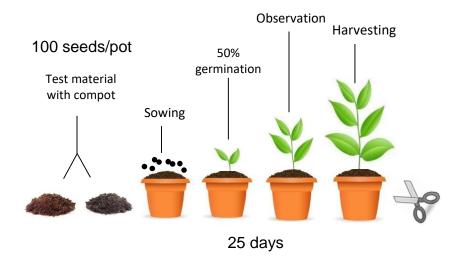
Disintegration (ISO 20200:2015 home compost adapted method for Sherpack)

Disintegration (ISO 20200:2015 home compost adapted method for Sherpack)

PoC#1

Full disintegration after 6 weeks

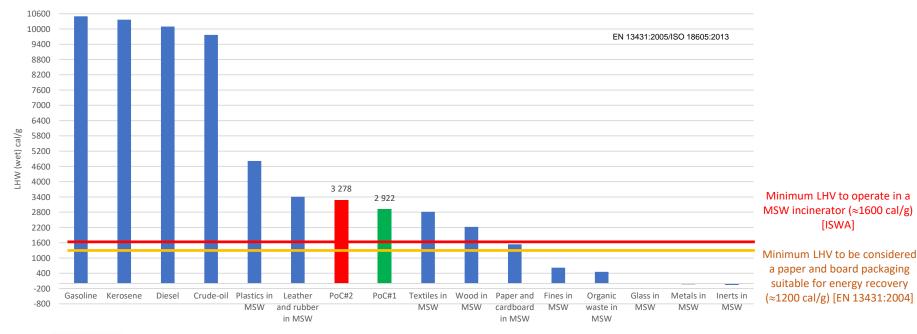
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
	43 4 0 •		(1) (1)		
Week 7	Week 8	Week 9	Week 10	Week 11	Week 12


Disintegration (ISO 20200:2015 home compost adapted method for Sherpack)

Start-up PoC#2 Full disintegration after 7 weeks Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 8 Week 11 Week 12 Week 7 Week 9 Week 10

Ecotoxicity (OECD 208:2006, tests on-going)

The method evaluates the effects on germination and growth of higher plants sown in a mixture consisting of compost (white or with test material) and reference substrate.

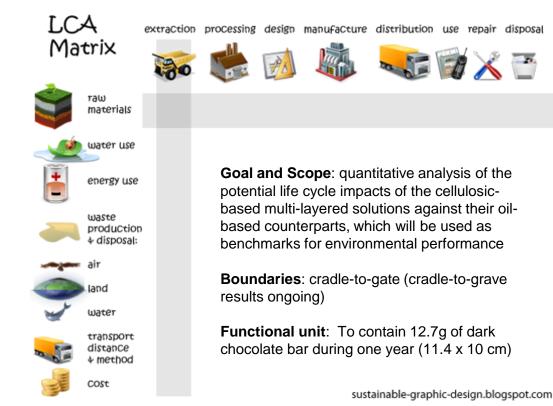

Germination rate ≥ 90% Biomass production≥ 90%

End-of-life: Incineration trials

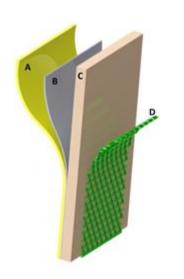
Low Heating Value (LHV) comparison with common fuels and Municipal Solid Waste (MSW) fractions [wet basis]

herpack

Environmental impact: Life Cycle Assessment (LCA)



Environmental impact: Life Cycle Assessment (LCA)

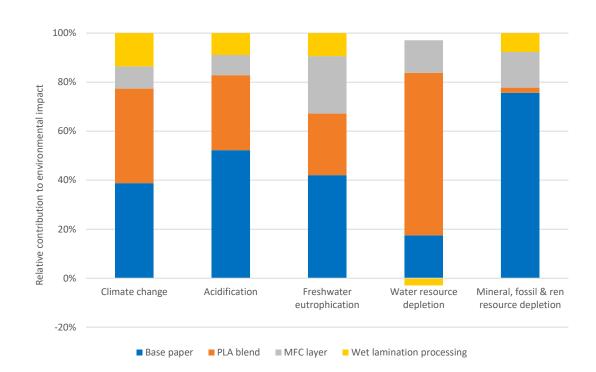


Sherpack on-line workshop / A. Dobón – C. González – C. Bartolomé – J. Palau – C. Locre / October 7th, 2020

Proofs-of-Concept

Layer		PoC#1	PoC#2	Benchmark	
ID	Layer type	wt%	wt%	Layer type	wt%
Α	Base paper	72	60	Polypropylene	99
В	MFC layer	19	21	Aluminium	1
С	PLA-blend	8	9		
D	Starch		9		
Total		100	100		100

Environmental impact: Life Cycle Assessment (LCA)



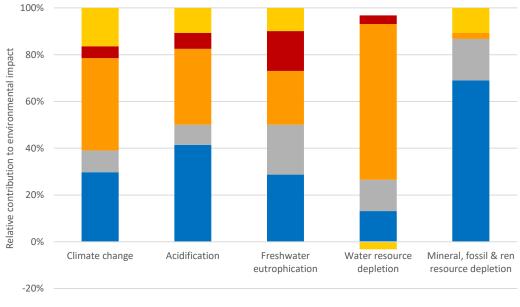
System boundaries Transports included Sherpack materials PLA blend Raw material extraction and Paper production MFC Grid printing Wet lamination Coating (only for PoC#2) Starch Benchmark materials Aluminium Raw material extraction and Film extrusion Lamination Polypropylene production

Life Cycle Assessment (LCA) PoC#1

Main contributions to impacts are:

- PLA blend preparation
- Base paper

Other impacts:


- MFC does not play a key role on the impact in the PoC (max 20% of impact)
- Environmental credits because of wastewater treatment (only in water resource depletion)

Calculation performed with ILCD 2011 Midpoint+ method

Life Cycle Assessment (LCA) PoC#2

■ Base paper ■ MFC layer ■ PLA blend ■ Starch ■ Wet lamination processing

Main contributions to impacts are:

- PLA blend preparation
- Base paper

Other impacts:

- MFC does not play a key role on the impact in the PoC (max 20% of impact)
- Environmental credits because of wastewater treatment (only in water resource depletion)

Calculation perfomed with ILCD 2001 Midpoint+ method. Starch not accounted in the impact about Mineral, fossil and renewable resource depletion

Life Cycle Assessment (LCA): carbon footprint

The carbon footprint of the PoC's is close to the fossil based counterpart (there is still room for improvement)

Layer	Carbon footprint (g CO₂ eq)		
PoC#1	20.2		
PoC#2	19.8		
Benchmark	12.2		

Calculation performed with ILCD 2011 Midpoint+ method

0.03

0.02

 $^{\rm c0.02}$ ed CO $^{\rm c}$ ed Kd

0.01

0.01

0.00

PoC#1

PoC#2

Benchmark

Conclusions

- Sherpack materials are compatible with recycling systems for paper-based packaging (< 1% of rejects after Somerville screening)
- ✓ Combined Sherpack base materials (Gerstar HDS base paper + MFC) are biodegradable
- Sherpack PoC's can be disintegrated in conditions similar to home composting
- ✓ If required, Sherpack PoC's can be also treated by incineration
- The carbon footprint of the PoC's is close to the fossil-based counterpart on PP/AI

Thank you for your attention

Any question?

