Sherpack Final Workshop

The science behind the project: 3 key innovative technologies Wet-lamination of cellulose fibrils Fleur Rol | CTP

Wet lamination of Cellulose fibrils

Fleur Rol David Guérin, Caroline Locre Grenoble, October 7th, 2020

Introduction

- The packaging material market is undergoing a major turn in its history
- > Food packaging industry is looking for alternatives to petrobased products which are
 - Biobased, Biodegradable, Recyclable
 - Barrier to grease, water, oxygen,...

- Cellulosic materials can be a solution and especially MicroFibrillated Cellulose (MFC)
- > A new process to combine Paper/Board and MFC was hence developed and patented by CTP in 2015

MFC Wet lamination process

1. Introduction to the MFC wet lamination

- Concept of MFC wet lamination
- Advantages and drawbacks compared to other MFC deposition methods
- Intellectual property

2. Performances of MFC wet laminated papers

- Barrier properties
- Mechanical properties / Adhesion of MFC on the papers

3. CTP's facilities for MFC wet lamination

- Lab scale: production of A4 samples
- Pilot scale: production of rolls

4. Conclusions

- 1. Introduction to the MFC wet lamination
 - Concept of MFC wet lamination
 - Advantages and drawbacks compared to other MFC deposition methods
 - Intellectual property
- 2. Performances of MFC wet laminated papers
 - Barrier properties
 - Mechanical properties / Adhesion of MFC on the papers
- 3. CTP's facilities for MFC wet lamination
 - Lab scale: production of A4 samples
 - Pilot scale: production of rolls

4. Conclusions

Sherpack / FR. DG. CL. / 10.07.20

New process: MFC Wet lamination

enough to get the **barrier** properties

Associate a thin layer of MFC with paper or board

- **100% cellulosic** material, recyclable and biodegradable

MFC film: good barrier properties to grease, contaminants and oxygen \geq

MFC layer should be thin enough for being **economically** relevant and thick

Biodegradable, biobased, recyclable

Concept of MFC wet lamination

But... MFC films are very brittle and MFC cost is high

6

Concept of MFC wet lamination

A wet MFC film (5 to 18% of solids) is dry enough to be viewed as a solid like self-standing material that can be picked up whereas it is wet enough to keep its adhesion ability and adhere onto a base paper without any glue

sherp

Concept of MFC wet lamination

Conclusion

MFC wet lamination allows to produce a MFC covered paper

- Targeted coat weight 5 to 50 g/m²
- → To get the benefit of MFC for barrier
- > Combined filtration, replication and drying for MFC layer
- ---- Optimize process costs
- > Adhesion without the use of glue
- ---- 100% cellulosic material, recyclable and biodegradable

Advantages and drawbacks compared to other MFC deposition methods

Technology	MFC deposit	Advantages Drawbacks	
Coating (spray, slot die, blade)	0.5 to 3 g/m²	-Easy to use, (even if some process adjustments are needed (pumps, backflow)	-CW>1g/m ² overpasses conventional coaters drying capabilities -Drying cost -Poor barrier at low coat weight
Lamination	>25 g/m²	-Excellent barrier	-Brittleness of MFC films -Use of glue -Material/Energy cost - % of cellulose in the multilayer
Deposition at the wet end	0 to 10 g/m²	-Use of the dewatering capability of the Fourdrinier	-Filtration through the wet mat -Adhesion on the press rolls -Decrease of the press section dewatering
Wet lamination technology	5 to 50 g/m²	-No glue -Relevant thickness vs barrier -Limit the drying cost	-Require a dedicated process

Intellectual property

- > Process and device for manufacturing a laminated material comprising a fibrillated cellulose layer
- > WO 2016174348 A1 PCT/FR2016/050986
 - Priority 28 Avril 2015
 - Publication 3 Nov. 2016
- Inventors
 - David Guerin, Yahia Rharbi, Patrick Huber, Valérie Meyer
 - CTP/CNRS
- Exploitation rights
 - CTP

- 1. Introduction to the MFC wet lamination
 - Concept of MFC wet lamination
 - Advantages and drawbacks compared to other MFC deposition methods
 - Intellectual property
- 2. Performances of MFC wet laminated papers
 - Barrier properties
 - Mechanical properties / Adhesion of MFC on the papers
- 3. CTP's facilities for MFC wet lamination
 - Lab scale: production of A4 samples
 - Pilot scale: production of rolls
- 4. Conclusions

Performances of MFC laminated papers

Reference Materials

- Gerstar HDS paper 60g/m² Ahlstrom Munksjö \succ
 - Mineral coated on one side and calendered
 - Thickness: 54µm •
- MFC: Exilva Borregaard >
 - 2wt% concentration

Borregaard

Morfi analysis

Performances of MFC laminated papers

sherpact

Wet lamination

Manual pick up,

MEB analysis of wet laminated paper

centre technique du papier

Barrier properties: Grease

MFC grammage (g/m²)	18	16	14	12	10	3-15	
Material total grammage (g/m²)	78	76	74	72	70	63-75	
Thickness (µm)	80	76 ± 1	72 ± 1	71 ± 2	69 ± 2	-	

- MFC confer grease barrier to the material whatever the MFC grammage
- Water and water vapour barrier should be developed using other process

Barrier properties: oxygen

- Good and very encouraging values of OTR for samples with 12g/m² of MFC
- But the high standard deviation indicated that this was not robust.
- The oxygen barrier is not currently linearly correlated with the grammage in the tested range
- > Below 9g/m², the OTR is out of range

Adhesion of the MFC layer on the paper

> The MFC layer adhesion is similar for MFC weights between 10 and 18g/m²

inerpack

Conclusion

- MFC brings grease barrier and oxygen barrier to paper
 - Surface homogeneity is primordial
 - No influence of the MFC weight on the oil barrier property between 10 and 18 g/m² of MFC
- The MFC layer adhesion on the paper can be improved by paper precoating
- 100% cellulosic materials
 - Biodegradable
 - Recyclable

- 1. Introduction to the MFC wet lamination
 - Concept of MFC wet lamination
 - Advantages and drawbacks compared to other MFC deposition methods
 - Intellectual property
- 2. Performances of MFC wet laminated papers
 - Barrier properties
 - Mechanical properties / Adhesion of MFC on the papers
- 3. CTP's facilities for MFC wet lamination
 - Lab scale: production of A4 samples
 - Pilot scale: production of rolls
- 4. Conclusions

CTP's facilities for MFC wet lamination

To bring excellent grease, oxygen, and contaminants barriers to papers and boards

- \succ \succ System Test. Launch & TRL 9 Operations **TRL 8** System/Subsystem Developmen TRL 7 Technology TRL 6 Demonstration TRL 5 Small Pilot Machine - 2019 Technology Development TRL 4 Research to prove TRL 3 Lab equipment - 2018 Feasibility TRL 2 Basic Technology Research TRL 1 Invention - 2015
- Dedicated equipment to develop the process and produce samples for testing and proofs of concept

MaLics

La Région

La Région 🗠

- Sample size compatible with further surface treatments
 - Coating
 - Laminating

....From lab scale to pilot scale

© A. Chézière - CTF

therpact Lab scale: production of A4 samples Malics TRL3 - 2018 La Région 🗠 Filtration Drying A4 handsheet former Manual pick up, Replication and Pressing • Conductive drying under • Wire/membrane stress Vacuum Flat or half-moon FONTUNE 0

Pilot scale: production of rolls

sherpack

TRL5 – 2019

- ➢ Useful width: 305mm
- ➢ MFC coating weight: 10 to 50 g/m²
- Paper grammage: 30 to 300 g/m²

- ➢ MFC max feed rate: 6L/min
- Speed: 1 to 10m/min
- Roll diameter (max): 500mm

- 1. Introduction to the MFC wet lamination
 - Concept of MFC wet lamination
 - Advantages and drawbacks compared to other MFC deposition methods
 - Intellectual property
- 2. Performances of MFC wet laminated papers
 - Barrier properties
 - Mechanical properties / Adhesion of MFC on the papers
- 3. CTP's facilities for MFC wet lamination
 - Lab scale: production of A4 samples
 - Pilot scale: production of rolls

4. Conclusions

Conclusions

- Cost efficient process to combine a conventional paper/board with a layer of MFC
- > 100% cellulosic material recyclable and biodegradable can be produced
- > MFC wet laminated paper/board present **good barrier properties** to grease, contaminants and oxygen
- > **Patented** by the **CTP** in 2015
- CTP's facilities
 - Lab scale: Production of A4 samples Already possible
 - Pilot scale: Production of rolls Available for external trials Q1/Q2 2021

Thank you for your attention

Fleur.Rol@webCTP.com

Questions?

