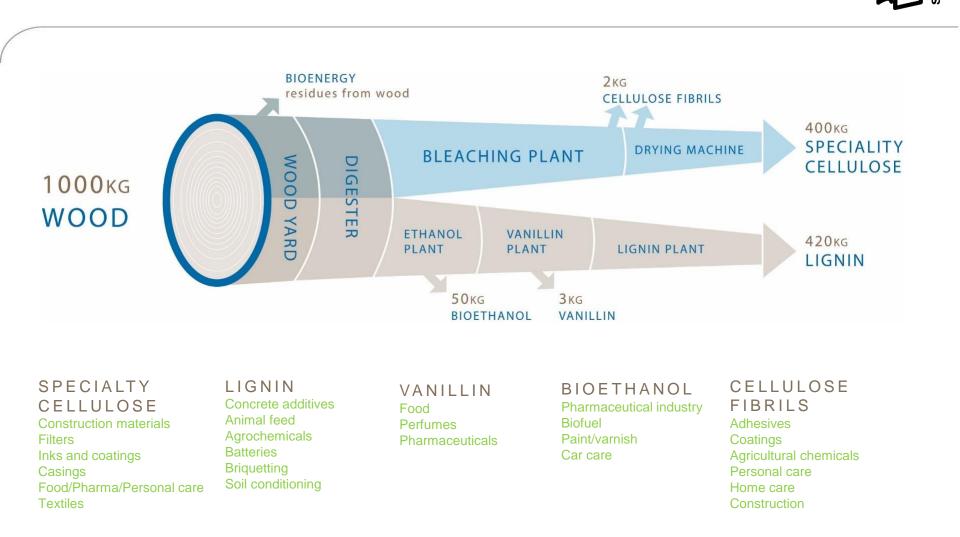


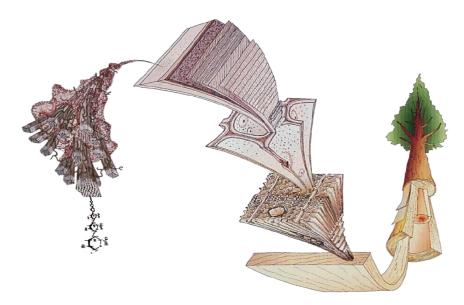
From barrier materials to biosourced packaging

Laura Crowther-Alwyn, CTP Anni Karppinen, Borregaard Grenoble, May 31st, 2018


Bio-based Industries Consortium

Horizon 2020 European Union Funding for Research & Innovation

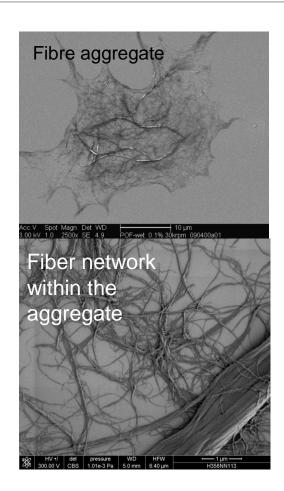
Borregaard – world's most advanced biorefiny


herpack

Exilva - A new product from Borregaard

- Microfibrillated Cellulose (MFC)
- High available surface area with functional OH groups new, exciting properties

Source: Harrington (1996) Univ. Of Canterbury


Exilva - Properties

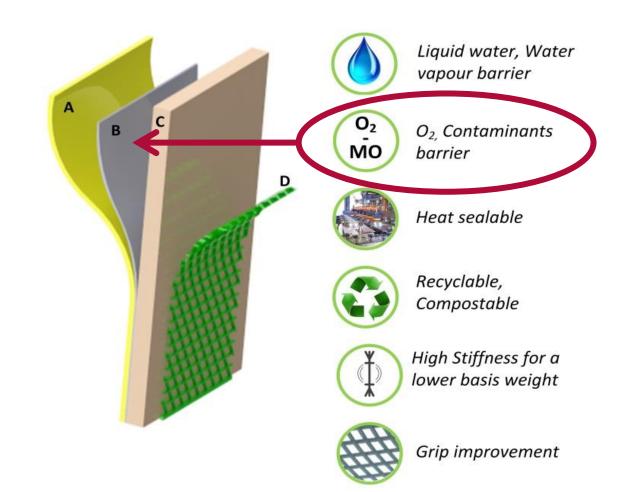
- 3D network of flexible microfibril aggregates
- Interesting rheological properties
 - Highly shear thinning
 - High viscosity at rest

Borregaard

- Fast viscosity recovery
- Very high water holding capacity
- Good film forming and barrier properties
- Non-toxic, environmentally friendly and a 100% bio-based product

The Exilva industrial plant

- New production facility
 - Capex 23 M€
 - Initial capacity 50 000 tons (as 2%), designed for easy expanding
 - Production started in Q3-16
 - Location: Sarpsborg, Norway
- Received grant from BBIJU (EU H2020) as a flagship project
 - 25 M€ over 3 years (May 2016-April 2019)
 - Aiding on commercialization phase of Exilva


BIO-BASED Consortium

European project funded by the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement N°709746

Main objectives of Work Package 2

du papie

Barrier properties

 MFC has better oxygen and oil barrier properties than many common packaging materials

Material	Relative humidity (%)	Oxygen permeability (cm ^{3.} µm)/(m².d.kPa)	
MFC	0	0.011	
MFC	50	3.52-5.03	
PET	50	10 - 50	
PLA	0	184	
LDPE	50	1900	

Values taken from Aulin, Gällstedt, Lindström, "Oxygen and oil barrier properties of microfibrillated cellulose films and coatings", *Cellulose*, (2010) 17:559-574 and Padberg, Bauer, Gliese "The influence of fibrillation on the oxygen barrier properties of films from microfibrillated cellulose" *Nord Pulp Pap Res J* (2016) 4: 548-560.

Influence of MFC grade

- 1 reference from CTP
 MFC-CTP KB3P
- 4 Exilva products:
 - Exilva 1
 - Exilva 2
 - Exilva 3
 - Exilva 4

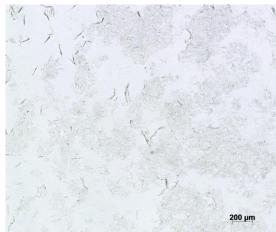
Increasing degree of fibrillation

MFC characterization

MFC-CTP KB3P

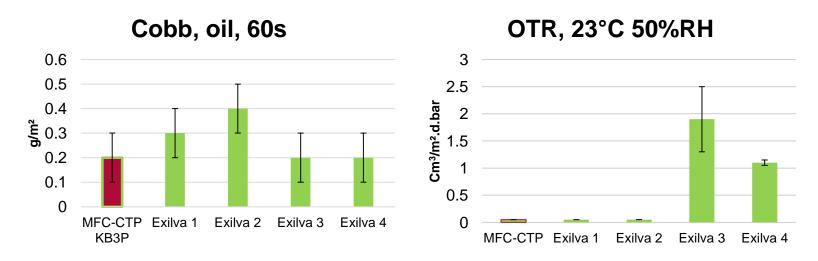
Sio Tru

Exilva 1

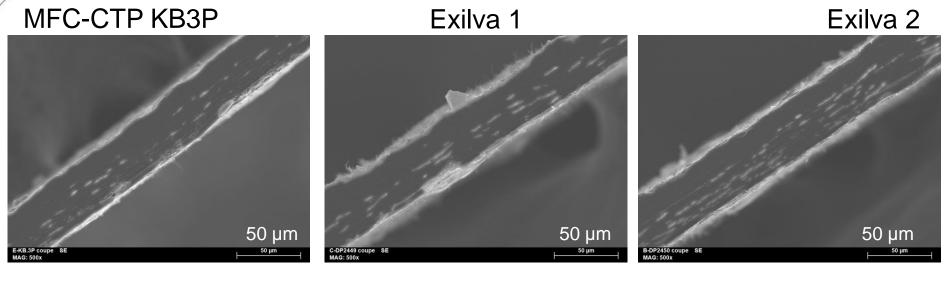


Exilva 3

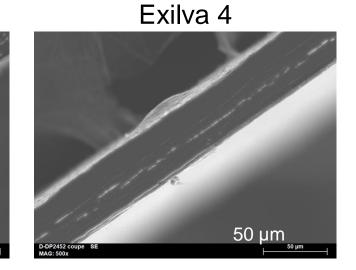
Exilva 4



Barrier properties of the MFC films



Sample	Grammage (g/m²)	Thickness (µm)	density (calculated)	
MFC-CTP KB3P	51 ±1	47	1.09	Increasing degree of fibrillation
Exilva 1	50 ±1	50	1.00	
Exilva 2	52 ±1	51	1.01	
Exilva 3	51 ±1	48	1.06	
Exilva 4	52 ±1	45	1.14	


Self-standing MFC films

50 µm

From barrier materials to biosourced packaging/ L.Crowther-Alwyn & A. Karppinen / 31.05.18 11

Mechanical properties of the MFC films

Conclusions

- Exilva, commercially produced MFC, can form films with outstanding barrier to oxygen and oil and probably to mineral oil
- The SHERPACK project will demonstrate the possibility to produce packaging materials that are biobased, recyclable, biodegradable, high barrier, including to mineral oils

